Section 11.5 part 2

normal extensions

11.4 - Splitting Fields - Normal Extensions

Def A field extension $K \supset F$ is called normal when it satisfies: Jor every irreducible polynomial $p \in F[x] \subset K[x]$, if p has a root in K, then p splits completely over K. into linear factors
One root in K (for an irreducible) implies all its coots in K.
Th 11.15 A field extension $K \supset F$
is a splitting field of some polynomial if and only if the extension KJF is finite-dimensional and normal.

Pf
(1) Straightforward part.

Assume that KDF is finite-dimensional and normal.
Wanted: k is a
Let u_{1}, \ldots, u_{n} be a basis of K over F (as a vector space) splitting field

Then $K=F\left(u_{1}, \ldots, u_{n}\right)$:

Indeed $K \supseteq F, K \ni u_{i}$, thus $K \supseteq F\left(u_{1}, \ldots, u_{u}\right)$ $F\left(u_{1}, \ldots, u_{n}\right) \supseteq K$ because every $k \in K$ is a linear combination $k=a_{1} u_{1}+\ldots+c_{n} u_{n} \quad c_{i} \in F$ thus $k \in F\left(u_{1}, \ldots, u_{n}\right)$
Since $k \supset F$ finite-dive'l, K is algebraic oyer F (Thll.9) every u_{i} is algebraic over F; let $p_{i} \in F[x]$ be the minimal polynomic of u_{i}
$p_{i}\left(u_{i}\right)=0, u_{i} \in K$; Since $K \supset F$ is normal,
p_{i} splits completely - has all roots in K
K is the splitting field of

$$
\begin{gathered}
f=p_{1} p_{2} \ldots p_{n} \\
F(\text { all roots of } f)=K=F\left(u_{1}, \ldots, u_{n}\right) \supseteq F
\end{gathered}
$$

(2) Assume that $K \supset F$ is thesplitting field of $f \in F[x]$
$K=F($ all roots of $f)$ - finitely many roots, all algebraic $=F\left(u_{1}, \ldots, u_{n}\right) \quad$ Thus $K \supset F$ is finite dimensional by Th 11.10

Wanted: KכF is normal
Pick arbitrary irreducible polynomial $p \in F[x]$
Let $v \in K$ such that $p(r)=0$. Wanted: all roots of p belong to K

$$
F \subseteq k \subseteq L_{1}
$$

the splitting field of p over K

$$
p \in F[x] \subset K[x]
$$

(ne know that Is exists)
Let $w \in L$ be any root of $P, w \neq V$
wanted: $K=L$
Wanted: $\omega \in K$
By $\operatorname{Cor}(1.8, \quad F(v) \simeq F(n s)$
\} take $\sigma=$ identity map

$$
\begin{gathered}
\sigma: F \rightarrow F \\
F(v) \simeq F(w) \cong F[x] /(p) \\
T h l l, 7
\end{gathered}
$$

Thill. 5 implies

$$
[k: F]=[k(\omega): F]
$$

Wanted:
$w \in K$ means

$$
\begin{gathered}
k((w)=k \\
{[k(w): K]=1}
\end{gathered}
$$

$$
\begin{aligned}
& K(\omega)=F\left(u_{1}, \ldots, u_{n}\right)(\omega)=F\left(u_{1}, \ldots, u_{n}, w\right)=F(\omega)\left(u_{1}, \ldots, u_{n}\right) \\
& K=F\left(u_{1}, \ldots, u_{n}\right)
\end{aligned}
$$

$K(\omega)$ is the splitting field of f over $F(\omega)$
K is the splitting field of f over $F \quad f \in F[x] \subset F(v)[x]$ at the same time is the splitting field of f over $F(x)$

$$
\begin{gathered}
\text { By } T h(1 . S, \quad[k: F]=[k(\omega): F] \\
k(\omega) \supseteq k \supseteq F
\end{gathered}
$$

By Thll.7 $[k(\omega): k][k: F]=[k(\omega): F]$

$$
[k(\omega): k][k ; F]=[k ; F]
$$

Finally $[k(n): k]=1$

